ESSENTIAL OIL OF Perovskia scrophulariifolia*

Kh. R. Nuriddinov,^a K. Kh. Khodzimatov,^b Kh. N. Aripov,^a T. Ozek,^c B. Demirchakmak,^c and K. H. C. Basher^c

The herbal parts of Perovskia scrophulariifolia (Labiatae) collected from Yakkabag in the Kashkadarya region of Uzbekistan in August, 1993 yielded 0.54% oil by water distillation. The oil was analyzed by GC/MS. Seventy-one components were characterized representing 95% of the oil with 1,8-cineole (11%), caryophyllene oxide (10%), camphor (9%), humulene epoxide II (7.9%), bornyl acetate (7.8%), and p-cymene (5.7%) as major constituents.

The genus *Perovskia* (Labiatae) is represented in the flora of the former USSR by six species which are distributed in Central Asia, North Iran, Beluchistan, Afghanistan, West Tibet, and West India [1].

Constituents of the essential oil of the aerial parts of *P. scrophulariifolia* growing in Turkmenistan were reported as borneol, camphene, geraniol, linalool, β -pinene, sabinene, terpinene, and terpinolene without quantitative indication [2]. In a separate study, 0.2-2.1% essential oil was obtained from herbal parts of the plants growing in Tyanshan, Fergana, Pamir-Alay, and Zarafshan mountains. Major constituents found in the oils were as follows: 1,8-cineole (15-19%), camphene (3.7-6.2%), δ -3-carene (4-6.5%), linalool (3-7.2%), linalylacetate (7.9-8.4%), humulene (5-7.7%), α -betulenol (4-6.7%), β -caryophyllene (7-13%), and α -pinene (8-12%) [3].

We have analyzed the essential oil of *Perovskia scrophulariifolia* Bunge occurring in Uzbekistan. The hydrodistillated essential oil was analyzed by GC/MS and the results are given in Table 1. Seventy-one components were characterized representing 95% of the oil. 1,8-Cineole, caryophyllene oxide, camphor, humulene epoxide II, bornyl acetate, and p-cymene were found as major constituents.

EXPERIMENTAL

The plant material was collected from Yakkabag in Kashkadarya region of Uzbekistan in August, 1993. The herbal parts were subjected to hydrodistillation for 3 h using a Clevenger-type apparatus to produce essential oil in 0.54% yield.

The essential oils were analyzed by GC/MS using a Hewlett-Packard GCD system. An Innowax FSC column (60 m $\times 0.25 \text{ mm } \emptyset$) was used with helium as carrier gas. GC oven temperature was kept at 60° for 10 min and programmed to 220°C at a rate of 4°C/min and then kept constant at 220°C for 10 min. Split ratio was adjusted at 50:1. The injector temperature was 250°C. MS were taken at 70 eV. Mass range was from m/z 10 to 425. A library search was carried out using the Wiley GC/MS Library and the TBAM Library of Essential Oil Constituents [4-9]. Relative percentage amounts of the separated compounds were calculated from total ion chromatograms by the computerized integrator.

^{*}Materials presented at the 2nd International Conference of Natural Compounds.

^aInstitute of the Chemistry of Plant Substances, Academy of Sciences, Tashkent, Uzbekistan.

^bInstitute of Botany, Academy of Sciences, Tashkent, Uzbekistan.

^cCentre (TBAM), 26470 Eskisehir, Turkey.

Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 389-391, May-June, 1997. Original article submitted November 4, 1996.

Compounds	Amg-	Compounds	Amo-	Compounds	Amo-
•	unts.		unts.		unts.
	%		%		%
α-pinene	1.43	p-cymen-8-ol	0.32	thujol	0.30
α-thujene	0.10	a-calacorene I	0.14	α-muurolene	0.79
camphene	1.25	piperitenone	0.97	a-selinene	0.16
β-pinenc	1.41	cubebol	0.08	isocaryophyllene oxide	1.75
sabinene	0.09	cis-jasmone	0.14	caryophyllene oxide	9.98
δ-3-carene	1.22	α-calacorene II	0.07	humulene epoxide l	0.54
myrcene	0.18	α-gurjunene	0.30	humulene cpoxide II	7.85
limonene	2.79	linalool	0.54	elemenal*	0.45
1,8-cineole	11.0	cis-sabinenehydrate	0.07	1-epi-cubenol	0.10
p-cymene	5.71	linalylacetate	0.27	viridiflorol	0.57
α-p-dimethyl	0.01	pinocarvone	0.09	cumin alcohol	0.13
styrene					
α-cubebene	0.19	bornyl acetate	7.82	cis-p-menth-3-en-1.2-diol	0.09
trans-	0.15	β-caryophyllene	0,72	T-cadinol	0.42
sabinenchydrate		•			
α-copaene	0.6 9	terpinen-4-ol	0.54	T-muurolol	0.20
camphor	9.10	cis-p-mentha-2,8-dien- 1-ol	0.11	α-bisabolol	0.91
carvone	0.12	nvrtenal	0.11	carvacrol	0.15
geranylacetate	1.49	aromadendrene	0.29	a-eudesmol	0.22
δ-cadinene	0.22	trans-pinocarveol	-0.29	a-cadinol	0.77
valdinene	1.32	δ-terpineol	0.48	caryophylladienol*	0.84
selina-3.7(11)-	0.29	α-humulene	1.80	calacorene alcohol I*	0.26
dien	0.25	a-numatene	1.00	chacorene alconor 1*	0.20
myrtenol	0.32	cryptone	0.44	calacorene alcohol II*	0.22
trans-carveol	0.16	γ-muurolene	0.48	caryophyllenol II	0.62
calamenene	0.43	a-terpinylacetate	4.56	epi-13-manool	2.57
m-cymen-8-ol	0.2 4	borneol	2.81	-	

TABLE 1. Composition of the Essential Oil of Perovskia scrophulariifolia

*Tentative identification by GC/MS data alone.

REFERENCES

- B. K. Shishkin, Flora of the USSR (Flora SSSR) XXI, AN SSSSR, Moscow-Leningrad (1954); Israel Program for Scientific Translations, Jerusalem (1977), p. 267.
- 2. M. O. Karryev, Mater. Yubileinoi Respub. Nauch. Konf. Farm. Posvyashennoy 50-letiyu Obraz. SSSR, Tashkent, SSSR (1972), pp. 62-63.
- 3. A. D. Dembitski, Izv. An Kaz SSR, Ser. Khim., 4, 4-10 (1984).
- 4. A. A. Swigar and R. M. Silverstein, Monoterpenes: Infrared, Mass, ¹H-NMR and ¹³C-NMR Spectra and Kovats Indices, Aldrich Chemical Co., Milwaukee, WI (1981).
- 5. W. Jennings and T. Shibamoto, Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography, Academic Press, London (1980).
- 6. Eight Peak Index of Mass Spectra, 3rd Edition, The Royal Society of Chemistry, London (1986), Vols. 1-7.
- 7. F. W. McLafferty and D. B. Stauffer, The Wiley/NBS Registry of Mass Spectral Data, John Wiley and Sons, New York (1988), Vols. 1-7.
- 8. R. P. Adams, Identification of Essential Oils by Ion Trap Mass Spectroscopy, Academic Press (1989).
- 9. R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, Allured (1995).